Fabric Conveyor Belts
Installation and Maintenance Guide

Habasit—Solutions in motion
The objective of this Installation and Maintenance Guide is to provide both manufacturer and operator with a comprehensive, albeit summarized overview of the most important aspects of the installation of conveyor systems as it pertains to fabric conveyor belting. Emphasis has been placed on recommendations on installation procedures, belt maintenance and cleaning as well as on storage of the conveyor belt itself.

A comprehensive trouble-shooting checklist supports fitters and service personnel in taking the right measures if tracking problems arise.

Product liability, application considerations
If the proper selection and application of Habasit products are not recommended by an authorized Habasit sales specialist, the selection and application of Habasit products, including the related area of product safety, are the responsibility of the customer. All indications / information are recommendations and believed to be reliable, but no representations, guarantees, or warranties of any kind are made as to their accuracy or suitability for particular applications. The data provided herein are based on laboratory work with small-scale test equipment, running at standard conditions, and do not necessarily match product performance in industrial use. New knowledge and experiences can lead to modifications and changes within a short time without prior notice.

BECAUSE CONDITIONS OF USE ARE OUTSIDE OF HABASIT’S AND ITS AFFILIATED COMPANIES’ CONTROL, WE CANNOT ASSUME ANY LIABILITY CONCERNING THE SUITABILITY AND PROCESS ABILITY OF THE PRODUCTS MENTIONED HEREIN. THIS ALSO APPLIES TO PROCESS RESULTS / OUTPUT / MANUFACTURING GOODS AS WELL AS TO POSSIBLE DEFECTS, DAMAGES, CONSEQUENTIAL DAMAGES, AND FURTHER-REACHING CONSEQUENCES.
Conveyor belt installation

The installation of a conveyor belt consists of the following steps: Checking the conveyor installation, belt installation, putting it into operation and aligning the belt.

Checking the installation

Prior to belt installation it is extremely important to check the conveyor installation thoroughly and to rectify any faults immediately.

- Make certain that the drive is switched off and ensure that it cannot be inadvertently switched back on
- Ensure that all parts of the installation in contact with the belt are clean and free from oil, grease and dirt, etc.
- Ascertain that the supporting structure is not distorted and is accurately aligned in all planes
- Ascertain that all pulleys and rollers and nosebars are set axially parallel and exactly at right angles to the belt running direction
- Check that the installation dimensions are correct. The best method is to measure across the diagonals and is done by marking the ends of the pulleys/rollers exactly at the verticals to the shaft axis \((A_R, A_L, B_R, B_L)\). The diagonal distances of points \(A_R \Leftrightarrow B_L\) and \(A_L \Leftrightarrow B_R\) must be exactly identical as well as distances between centers \(A_L \Leftrightarrow B_L\) and \(A_R \Leftrightarrow B_R\).

Note: Identical distances between centers \((A_L \Leftrightarrow B_L\) and \(A_R \Leftrightarrow B_R)\) alone are no guarantee of the rectangular arrangement of the pulleys/rollers!
Belt installation

After the checks described before have been completed and any faults rectified, it is necessary to ensure before assembly can start that all tools and equipment needed are on site and that there is a guaranteed energy supply available (electric current, compressed air, water).

- The tensioning device must be fixed on the lowest setting of the take-up

- The belt ends must be protected from soiling and damage during assembly. The belt should not be twisted or kinked at any time during assembly.

- Great care must be taken in feeding the belt into the installation

- In the case of skived and glued joints, care needs to be taken to ensure that goods will not damage or tear the joint. This is particularly important when accumulation takes place.

- If the belt is to be joined on the installation, the joining instructions must be carefully followed

- When tensioning the belt, ensure that the tension pulley is adjusted exactly parallel to the belt running direction and that it remains so after tensioning has been completed

First-time tensioning

Although in practice conveyor belts are often tensioned by feel, it is important to make sure that the driving pulley can drive the belt without slipping even under maximum load.

Because synthetic conveyor belts relax after the first elongation, the effective tensile force decreases during a running-in time of several hours, until the force remains constant.

It is important that the belt has been sufficiently tensioned already at the installation in order to guarantee slippage-free operation after the relaxation phase.

Therefore, the correct tensioning procedure and the observation of a minimal initial elongation are important.

\[
\begin{align*}
F & \text{ Tensile force [N]} \\
1 & \text{Tensile force immediately after tensioning} \\
2 & \text{Effective tensile force after running-in} \\
3 & \text{Required tensile force for slippage-free operation after relaxation}
\end{align*}
\]
Conveyor belt installation

Recommended initial elongation

The minimum and maximum admissible initial elongation ε_o vary according to the material used for the traction element:

<table>
<thead>
<tr>
<th>Traction element material</th>
<th>Min. initial elongation ε_{omin}</th>
<th>Max. initial elongation ε_{omax}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyester fabric</td>
<td>0.3%</td>
<td>around 1%</td>
</tr>
<tr>
<td>Polyamide fabric</td>
<td>0.5%</td>
<td>around 1.5%</td>
</tr>
</tbody>
</table>

The optimal initial elongation can be calculated by help of the Habasit CONVEY-SeleCalc program. If the calculated initial elongation is available, this figure should be used.

Procedure for first-time tensioning

1. Place two measuring marks on a distance of 1,000 mm on each side of the untensioned belt
2. Tension the belt with the tensioning device to the required initial elongation ε_o
3. At for example 0.5% initial elongation, the correct tension is achieved, if the distance of the marks has increased to 1005 mm
4. Once the belt has completed at least one circuit of the installation, the distance between the marks is to be measured again and then corrected where necessary
Belt alignment

Since the conveyor belt is following the alignment of the structure and components on which it is operating, it is essential that the conveying installation itself is accurately aligned and that the belt is properly fitted by trained personnel.

- At first, run the conveyor belt only slowly or intermittently with frequent stops and starts, so that any run-off tendency can be detected quickly and rectified before any damage occurs.

- Make the first corrections at locations where potential for damaging the belt is greatest.

- Carry out adjustments in small steps, working on only one pulley at a time. Adjustments to multiple pulleys or rollers can adversely affect the tracking characteristics of the belt, causing the system to become unstable and vary with different operating conditions.

- If guiding pulleys are present, it is recommended to use these elements to align the belt run.

- After each adjustment, allow the belt to rotate a few times to position itself to the new alignment before making any further corrections.

- Bear in mind that each tracking adjustment may result in further adjustments being necessary elsewhere on the installation.

- Cylindrical pulleys which are not at right angles to the belt running direction are not self-tracking and so, with changes in run-off tendency, will need to be reset. That’s why, with reversing operations, the position of cylindrical pulleys should remain exactly at right angles to the belt running direction.

- In the case of belts with guiding profiles, the belt is to be aligned under no-load conditions so that the profile can run in the grooves without running against the groove walls.
Proper untensioning and retensioning
Special care has to be taken when a conveyor belt needs to be untensioned (and possibly removed in order to perform maintenance work) and finally installed and tensioned again.

Note: Retensioning of a released conveyor belt with the described method for first-time tensioning (see page 4) results in overtensioning, as the new elongation will be added to the not yet fully released initial elongation.

The correct procedure, therefore, is the following:

Before (!) slackening the belt, place measuring marks on a distance of for example 1000 mm on each side of the tensioned belt. If the marks of the first tensioning are still visible, these can be used as well.

Memorize or take a note of the original distance between the measuring marks of the tensioned belt!

Slacken the belt by releasing the tensioning device. The distance of the measuring marks gets shorter, however, the released length (x) is not of interest.

After the maintenance work is finished, reinstall the belt and tension it until the measuring marks reach the previously noted distance (for example 1000 mm).
Apart from cleaning, conveyor belts made of synthetic materials require little maintenance.

Check of the belt tension
A periodic check of the belt tension is recommended, particularly where operating conditions are harsh, e.g. frequent starts under full load, significant temperature fluctuations, etc.

If the tension is too low, retension the belt until it works again properly. Do not exceed the maximum admissible elongation of the conveyor belt.

Cleaning

It is important that all parts of the installation that come into contact with the belt are kept as clean as possible. Oil, grease, moisture, rust, dirt, traces of conveyed products, etc. on pulleys, rollers, slider bed and other parts of the installation in contact with the belt may cause operational and belt performance problems and will certainly shorten belt service life.

The importance of belt cleanliness with regard to drive, proper tracking response and belt life cannot be overemphasized. Dirt on the conveying side of the belt may also lead to process breakdowns. Obviously hygiene is of particular significance in the food sector where a number of special cleaning measures must be implemented.

Listed below a few general points on the cleaning of synthetic conveyor belts:

- Cleaning should, wherever and whenever possible, be carried out when the installation is at rest (safety aspect)
- In the case of light dirt deposits (dust, etc.), clean with a soft cloth; dry or moistened with cold or warm water
- Oily, greasy soiling can be removed with hot water and a general, non-abrasive household detergent (low foaming types can aid the rinsing process)
- Spot cleaning can be performed via a damp rag application of a suitable solvent (see table)
- Heavy soiling can be removed by scrubbing with hot soapy water or washing with a mild solvent (see table)
The following table shows the relative suitability of common detergents and solvents for cleaning of synthetic conveyor belts:

<table>
<thead>
<tr>
<th>Habasit category of resistance</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material cover (conveying side)</td>
<td>PA</td>
<td>NBR</td>
<td>PUR</td>
<td>Hamid</td>
<td>PVC*</td>
<td>EPDM</td>
<td>NBR</td>
<td>PUR</td>
<td>SI</td>
<td>TPU</td>
</tr>
<tr>
<td>Material traction layer (fabric)</td>
<td>PA</td>
<td>Hamid</td>
<td>PET</td>
<td>AR</td>
<td>CEL</td>
<td>PET</td>
<td>PET</td>
<td>Glass</td>
<td>PET</td>
<td>AR</td>
</tr>
<tr>
<td>Cleaning agent</td>
<td>Neutral</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
</tr>
<tr>
<td>Cleaning agent</td>
<td>Alkaline</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
</tr>
<tr>
<td>Cleaning agent</td>
<td>Acid</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
</tr>
<tr>
<td>Cleaning agent</td>
<td>Chloric</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
</tr>
<tr>
<td>Cleaning agent</td>
<td>Alcohols</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
<td>☠</td>
</tr>
</tbody>
</table>

List of materials
- AR: Aramide
- BW: Cotton
- CEL: Cellulose
- EPDM: Ethylene propylene terpolymer rubber
- NBR: Acrylonitrile-butadiene rubber
- PA: Polyamide
- PET: Polyester
- PTFE: Polytetrafluorethylene (Teflon)
- PUR: Polyurethane cross-linked
- PVC*: Polyvinylchloride (monomer softener)
- PVC**: Polyvinylchloride (polymer softener)
- SI: Silicone
- TPO: Polyolefin thermoplastic
- TPU: Polyurethane thermoplastic

Explanation of characters
- ☠: Resistant under standard climatic conditions: 23 °C / 73 °F, 50% relative humidity
- ☠: Contingently resistant
 Depending on concentration, duration of impact, thermal and mechanical strain, discoloration, swelling, embrittlement or abrasion are possible
- ☠: Not resistant also at low concentration

Examples of cleaning agents
1) Water
2) Soap water, soda, ammonia solution
3) Phosphoric acid (diluted 1%)
4) Javel water (sodium hypochloride solution <1%)
5) Isopropanol, ethanol, methanol, methylated spirit
Maintenance and cleaning

- **Unsuitable** solvents are:
 - Aromatic compounds (benzene, toluene, xylene)
 - Chlorinated hydrocarbons (trichloroethylene, tetrachloroethylene, carbon tetrachloride)
 - Ketones (acetone, methylethyl ketone)

- When working with flammable and/or noxious chemicals, it is vital for you to observe all applicable safety precautions (refer to the corresponding safety data sheets for the chemicals to be employed).

- Please consult our list “Chemical resistance” for suitability prior to using chemical substances for cleaning our belts.

- When cleaning with hot water or steam, take care not to exceed the maximum permitted temperature for the belt.
 Caution: Inappropriate cleaning with high-pressure cleaning apparatus may damage the belt.

- The belt should be dried after being cleaned with water.

- Do not immerse belts in water or other fluids for long periods. This can result in irreversible dimensional changes (shrinkage), camber, color changes, degradation of the materials, layer separation or premature splice failure, etc.

- Where brushes are used for cleaning, use only those with soft bristles.

- Special and statutory requirements apply for the cleaning and disinfecting of conveyor belts in the food industry. These regulations must be complied with.

- For further information, please contact your Habasit specialist.
Unfavorable storage conditions or improper handling result in changes in the physical characteristics of most synthetic products. Such changes can, among other things, shorten the service life of the product.

The belts should be protected against damage, contamination, moisture, extreme temperatures and UV light, ideally they should be stored in a dark room or in opaque plastic wrap which will also protect the belt against dust and other contaminants. Products containing polyamide should always be wrapped airtight, to avoid undesirable absorption of humidity or drying out.

Habasit belts should preferably be stored in their original packaging.

Storage

Rolls of narrow belts can be stored horizontally on boards or pallets. Several rolls of such products can be stacked as long as the resulting weight does not crush or deform the belts.

Joined belts should be rolled on a hard tube. The tube diameter must not be smaller than the recommended minimum pulley diameter for the belt as this will prevent them from crimping.

Heavy rolls should preferably be stored suspended with the aid of a steel bar or laying on a thick, soft rubber foam bedding.

Handling of heavy rolls

To lift a large roll of belts, insert a steel bar through the hole at the core of the roll and attach it to a hoist with two rope slings or chains attached to a crossbeam. To prevent damage to the belt edges by the ropes or chains, the crossbeam must be longer than the width of the roll.

Belt rolls can also be transported using forklift trucks. Take care that the outer belt layers are not damaged by the fork edges.
Tracking problems in fabric belt conveyors are only in minor cases caused by the belt. Missing or insufficient tracking measures on the installation design, incorrect installation, bad maintenance or wrong countermeasures if tracking problems arise are usually the source of the problems.

The following checklist supports fitters and service personnel in taking the right measures if tracking problems arise.

<table>
<thead>
<tr>
<th>Source of tracking problem</th>
<th>Solutions (countermeasures)</th>
</tr>
</thead>
</table>
| Material build-up on pulleys, rollers, scrapers and on the running side of the belt | – Remove dirt accumulation
– Improve maintenance and cleaning intervals
– Install appropriate cleaning devices |
| Conveyor frame crooked under belt tension, weight of goods or due to uneven floor | – Straight the frame in all planes
– Reduce the belt tension
– Reinforce the installation |
| Slanted slider bed | – Set the slider bed horizontally even |
| Sticking pulleys, rollers or idlers | – Clean and lubricate the bearings
– Improve the maintenance |
| Pulleys, rollers or idlers out of square with the running axis of the belt (overadjusted system, conflict of tracking means) | – Release the tension
– Straight the frame in all planes
– Set all pulleys, rollers, idler, nosebars, etc. exactly at right angles to the belt running axis
– Tension the belt to the required initial elongation
– Let the belt run and carry out necessary adjustments in small steps only
– Do not adjust more than one pulley at once |
| Belt distorted permanently by asymmetric tensioning | – Check if crown height and pulley shape are according to our recommendations; if required remachine the pulley
– Belt laterally too stiff; change to a more flexible belt
– Increase the belt tension if possible
– Install further tracking measures or an automatic belt control |
| No or insufficient guiding effect of cylindrical-conical pulleys; belt contact with conical parts insufficient | – Set all pulleys, rollers, idlers, nosebars, etc. exactly at right angles to the belt running axis. |
| Pivoted cylindrical pulleys or rollers in conveyors with reversal running direction | – Track the belt by other means, so that the profile does not touch the groove as soon as no lateral forces appear |
| Guiding profiles permanently slide on side of the groove; profile and groove worn off | – Check whether the deflection at maximum load exceeds the admissible deflection
– Calculate the smallest pulley diameter with respect to deflection, e.g. with CONVEY-SelecCalc |
| Pulley deflection too high | – Check if crown height and pulley shape are according to our recommendations; if required remachine the pulley
– Belt laterally too stiff; change to a more flexible belt
– Increase the belt tension if possible
– Install further tracking measures or an automatic belt control |
Trouble-shooting of tracking problems

<table>
<thead>
<tr>
<th>Source of tracking problem</th>
<th>Solutions (countermeasures)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-center loading</td>
<td>- Install or adjust chute, funnel or the like to place load on center of the belt</td>
</tr>
<tr>
<td>Lateral feeding or lateral diverting</td>
<td>- Install or adjust means to keep the belt locally tracked</td>
</tr>
</tbody>
</table>
| If it is not clear, whether the source of the tracking problem is the belt or inappropriate installation design | 1. Remove the belt
2. Install the belt the other way round
3. Let the belt run and observe the tracking behavior
 - If the belt runs off in the same direction as before, the problem has to be solved on the installation
 - If the belt runs off in the opposite direction as before, the belt is the problem |
| Bowed belt ("banana") | - Bow should disappear during running-in
- If not, tension the belt a bit more
- In rare occasions the belt has to be replaced
- Check storage and handling of rolls |
| Belt has been overtensioned and is out of shape due to unequal high tensile stresses | 1. Remove the belt and let it relax
2. Check the circumference on both sides
3. If the length is not equal on both sides, the belt is irreversibly distorted and has to be replaced |
| Joint area not right-angled | - Minimal influence on belt tracking!
- If the effect cannot be accepted, rejoin the belt |

Detailed information about tracking measures on the installation design can be found in the “Fabric Conveyor Belts Engineering Guide.”
Customers first
At Habasit we understand that our success depends on your success. This is why we offer solutions, not just products; partnership, not just sales.
Since our foundation in 1946, Habasit has brought this understanding of customer needs to life every day and for every application. That’s why we’re the No. 1 in belting today. Worldwide.
Learn more on www.habasit.com

Committed to innovation
Habasit is strongly committed to the continuous development of innovative, value-added solutions. Over 3% of our staff are dedicated exclusively to R&D, and our annual investment in this area exceeds 8% of turnover.

Certified for quality
We deliver the highest quality standards not only in our products and solutions, but also in our employees’ daily work processes. Habasit AG is certified according to ISO 9001:2000.

Worldwide leading product range
Habasit offers the largest selection of belting, conveying, processing and complementary products in the industry. Our response to any request is nothing less than a specific, tailor-made solution.
Rossi is one of Europe’s largest manufacturers of gear reducers, gearmotors, inverters, standard and brakemotors, and is a member of the Habasit Group.

Rossi S.p.A.
Via Emilia Ovest 915/A
41100 Modena – Italy
Phone: +39 059 33 02 88
www.rossi-group.com
info@rossi-group.com